
Оптические свойства ПЭО-покрытий на ниобии, сформированных в боратном и вольфраматном электролитах

<u>Е. С. Чубиева</u>-¹, И. В. Лукиянчук ², М. С. Васильева ³, Ю. Б. Будникова⁴, Н. М. Яковлева ⁵ ^{1,5}Петрозаводский государственный университет, г. Петрозаводск, Россия ^{2,3,4} Институт химии ДВО РАН, г. Владивосток, Россия

Актуальность

- ✓ Плазменное электролитическое оксидирование (ПЭО) металлов при напряжениях выше напряжения искрения (Ui) применяется для получения покрытий заданного состава с высокой адгезией к металлической подложке и многослойной градиентной морфологией.
- ✓ Для ПЭО Nb обычно используются водные электролиты на основе силикатов, фосфатов и алюминатов*.
- ✓ Представляет интерес расширить состав электролитов, применяемых для ПЭО ниобия.

Эволюция разрядов по мере нарастания толщины оксидного слоя: искровые (а), дуговые (в)

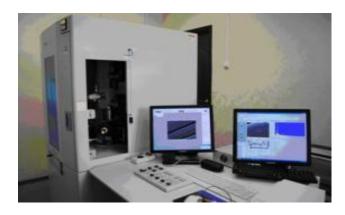
Цель работы

Изучить влияние состава электролита (боратный, вольфраматный) и режима плазменноэлектролитической обработки ниобия на состав, морфологию поверхности и оптические свойства формируемых покрытий.

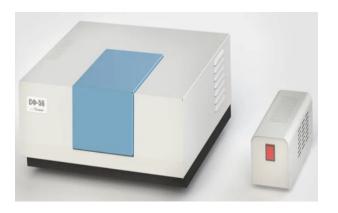
Объекты исследования

- ✓ Образцы Nb фольги размером 2x2 см, предварительно отожженные при 1700 °С в течение 1 ч. Было получено четыре группы образцов по три в каждой группе.
- Установка для ПЭО-синтеза представляла собой полипропиленовый стакан с электролитом, в который погружали ниобиевый образец (анод) и катод, выполненный из полой трубки сплава никеля в форме змеевика.

№ группы	Условия ПЭО - синтеза оксидных покрытий
1	Электролит 0.1М $Na_2B_4O_7$, плотность тока j=0.1 A/cм², время формирования пленки 10 мин.
2	Электролит 0.1М $Na_2B_4O_7$, плотность тока j=0.1 A/cm^2 , время формирования пленки 5 мин.
3	Электролит 0.1М Na_2WO_4 + 0.1М CH_3COOH , плотность тока j =0.1 A / cm^2 , время формирования пленки 5 мин.
4	Электролит 0.1М Na_2WO_4 , плотность тока j=0.2 A/cm^2 , время формирования пленки 5 мин.

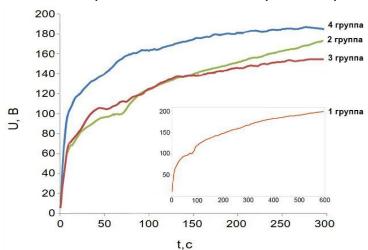


Вид работающей установки для ПЭО (а,б)


Методы исследования

□Морфологию поверхности и элементный состав исследовали на сканирующем электронном микроскопе высокого разрешения Hitachi S5500 (Япония), оснащенном приставкой для проведения энергодисперсионного рентгеноспектрального анализа ThermoScientific (США).

□Спектры диффузного отражения света от полученных ПЭО-покрытий регистрировались с использованием спектрофотометра СФ-56 (Россия).

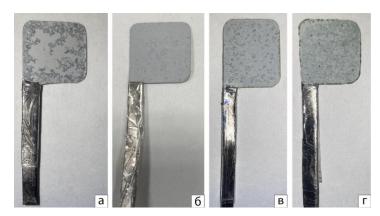

Сканирующий электронный микроскоп высокого разрешения Hitachi с приставкой

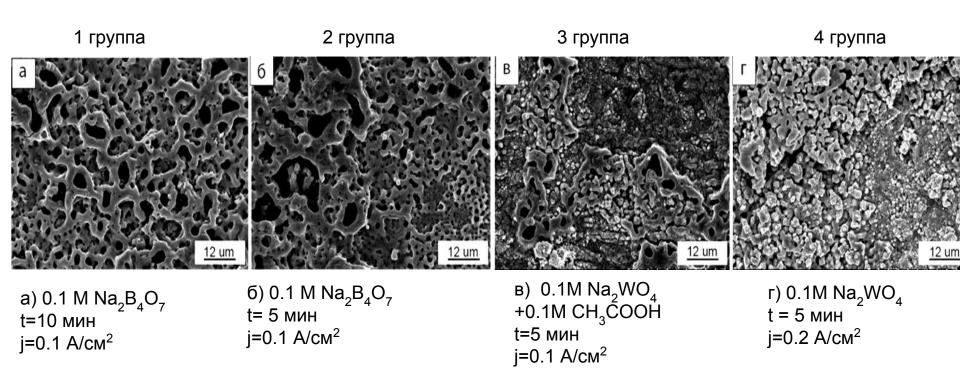
Спектрофотометр СФ-56 (Россия)

Результаты и их обсуждение

Кинетика роста оксидных покрытий при ПЭО ниобия

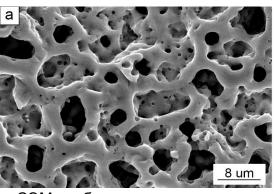
Кинетические зависимости напряжения от времени U(t) для различных групп образцов

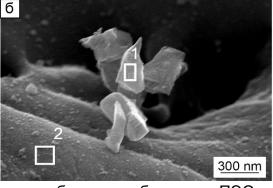



Фото полученных образцов

Данные из кинетических зависимостей роста ПЭО-покрытий

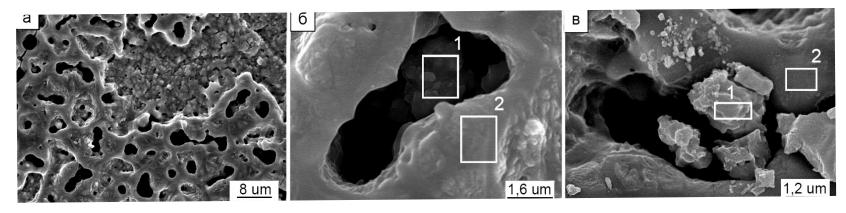
№ группы	Электролит	j, А/см²	t, мин	U _i , B	U _f , B
1	0.1M Na ₂ B ₄ O ₇	0.1	10	54.7±0.9	204±5
2	0.1M Na ₂ B ₄ O ₇	0.1	5	57.0±3.0	173±4
3	0.1M Na ₂ WO ₄ + 0.1M CH ₃ COOH	0.1	5	86.0±3.0	185±1
4	0.1M Na ₂ WO ₄	0.2	5	68.9±0.4	156±3


Ui – напряжение искрения; U_f – конечное напряжение формирования


Морфология поверхности и элементный состав ПЭО-покрытий

СЭМ-изображения участков поверхности ниобия после ПЭО

Морфология поверхности и элементный состав ПЭО-покрытий


Диаметр пор от 3 до 10 мкм (рис. а). При большем увеличении (рис. б) видны образования с линейными размерами от 190 до 400 нм (предположительно кристаллиты), и близкие по форме наноразмерные объекты.

СЭМ-изображения участка поверхности образца ниобия после ПЭО (первая группа)

05- 04-	Анализируемый	Концентрация С, ат. %			0 (0	
Объект	участок	СО		Nb	C_{o}/C_{Nb}	
Поверхность	рис. а	-	76±2	24±1	3,15	
Дисперсная частица в поре	рис. б, область 1	51±3	37±2	13±1	2,89	
Валик (гладкая поверхность рядом с порой)	рис. б, область 2	46±3	39±1	15±1	2,64	

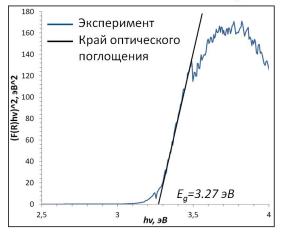
Элементный состав морфологических объектов образца **I** (ПЭО: 0.1M Na₂B₄O₇, t=10 мин, j=0.1 A/cм²)

Морфология поверхности и элементного состава ПЭО-покрытий

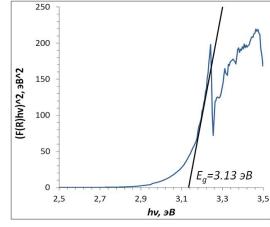
СЭМ-изображения участка поверхности ниобия после ПЭО третьей группы

05	Анализируемый участок	Концентрация С, ат. %				
Объект		С	0	Nb	W	
Поверхность	рис. а	14±2	52±2	17±1	17±1	
Дно поры	рис. б, область 1	-	17±3	-	83±3	
	рис. в, область 1	22±2	55±2	5±1	18±1	
Валик (гладкая поверхность рядом с порой)	рис. б, область 2	16±2	62±1	11±1	11±1	
	рис. в, область 2	14±2	54±2	120±1	12±1	

Элементный состав морфологических объектов образца **III** (ПЭО: 0.1M $Na_2WO_4+0.1M$ COOH, t=5 мин, j=0.1 A/cм²)


Оптические свойства образцов

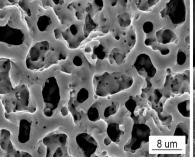
Ширина запрещенной зоны была оценена из спектров диффузного отражения методом Тауца:

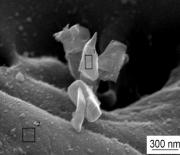

$$(h\nu F(r))^{1/n} = A(h\nu - E_g)$$

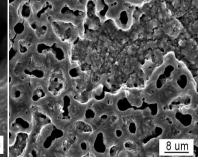
где F(R) – функция Кубелки-Мунка, n=1/2 для прямого разрешенного перехода

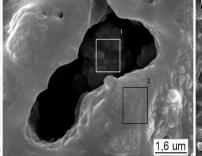
$$F(R) = \frac{(1-R)^2}{2R}$$

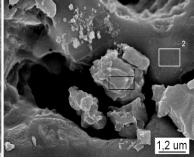
(a) $0.1M \text{ Na}_2B_4O_7$, t=10 muh, $j=0.1 \text{ A/cm}^2$




(6) $0.1M \text{ Na}_2WO_4 + 0.1M \text{ CH}_3\text{COOH},$ $t=5 \text{ muh}, j=0.1 \text{ A/cm}^2$


Композит	Электролит	ј, А/см²	t, мин	Е _а , эВ
Nb/Nb ₂ O ₅ (10 мин)	0.1M Na ₂ B ₄ O ₇	0.1	10	3.27
Nb/Nb ₂ O ₅ (5 мин)	0.1M Na ₂ B ₄ O ₇	0.1	5	3.27
	0.1M Na ₂ WO ₄ +	0.1	5	3.25
Nb/Nb ₂ O ₅ /WO ₃ (pH 6)	0.1M CH ₃ COOH	0.1		
Nb/Nb ₂ O ₅ /WO ₃ (pH 8)	0.1M Na ₂ WO ₄	0.2	5	3.13


Влияние электролита и режима ПЭО-обработки на энергию прямого разрешенного электронного перехода сформированных оксидных покрытий



Заключение

- 1.Впервые получены ПЭО покрытия на ниобии в электролитах на основе тетрабората натрия и вольфрамата натрия.
- 2. Показано, что морфология поверхности ПЭО-покрытий зависит от выбора электролита и режима обработки. В боратном электролите формируются орнаментальные поверхностные структуры с большим числом пор, размеры которых зависят от времени обработки. На поверхности ПЭО-покрытий, полученных в вольфраматном электролите, имеется большое число дисперсных частиц округлой формы.
- 3. Согласно данным энергодисперсионного анализа, ПЭО-покрытия, сформированные на ниобии в боратном электролите, содержат преимущественно оксиды ниобия, в то время как в вольфраматных электролитах образуются W-содержащие ПЭО-покрытия.
- 4. Оценена ширина запрещенной зоны, которая составляет 3.13–3.25 эВ для ПЭО-покрытий, сформированных в вольфраматных электролитах, и 3.27 эВ для ПЭО-покрытий, полученных в боратном электролите.

