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The numerical realization of the helicoidal mechanical model of the DNA molecule by the Runge-Kutta 

method of the fifth order of accuracy with an automatically selectable variable step in time is proposed. The 

model is a further development of the well-known helicoidal DNA model developed by M. Barbi et al. 

Molecular dynamic modeling of DNA denaturation was carried out on the basis of the proposed model. 

Agreement of the calculated temperature of denaturation with its experimental values is obtained. 
 

DNA molecules can be used as structural elements of promising electronic devices. Electronic 

nanobiochips have a number of advantages over modern silicon chips (miniature, high-speed performance 

and accuracy). It is also possible to use DNA molecules in memory and logic devices. The success of the 

use of DNA in electronics depends on the possibility of ensuring its conductivity, which is largely 

determined by the properties of open states. The formation of open states (denaturation bubbles) and their 

propagation can be numerically modeled based on various mechanical models. Interest in description of 

the physical and mechanical behavior of DNA molecules began with work [3] and increased in part of 

mathematical modeling of this behavior after work. A fairly general dynamic helicoidal model for 

describing the mechanical behavior of a DNA molecule was developed in the works of M. Barbi et al. 

This work is devoted to the further development and numerical realization of the M. Barbi model. 
 

Slide 1 (MECHANICAL DNA MODEL). The stages of transitioning from the actual helical 

geometry of a DNA molecule to a helicoidal DNA model are shown here. In it, each pair of nitrogenous 

bases rotates in a relatively rigid backbone of the molecule and its configuration is given by two 

generalized coordinates (n = 1,..., N; N is the number of base pairs in DNA): rn is a radial variable 

associated with the break of hydrogen bonds and Φn is the rotation angle of each of the base pairs (the 

combination of these angles sets the current helical structure of DNA; the initial twist of the molecule is 

given by the constant difference between the angles of rotation of adjacent pairs θ). In this case, the bases 

themselves are considered as indivisible and non-deformable objects (point masses). 

Summing the energy over all bases and interactions, we get from the dimensionless Lagrange function 

for the considered mechanical system (1/a is the length scale; D is energy scale; 
2/ /m D a  is time 

scale). This Lagrange function is presented at the bottom of the slide. The dynamic behavior with The 

Parameters of the homogeneous DNA molecule from A-T bases pairs are presented in Table. 
 

Slide 2 (LAGRANGE EQUATIONS). According to the obtained dimensionless Lagrange function, 

we find a system of 2N equations of bases motion. Each of the ordinary differential equations of the 

system has a second order and to obtain a single solution to this system, it is necessary to set the 4N of 

initial conditions (2N initial values of generalized coordinates and 2N initial values of generalized 

velocities). The system of nonlinear equations with initial conditions is written in the form of a system of 

4N equations of the first order and is integrated numerically by the Runge-Kutta method of the fifth order 

of accuracy with variable and automatically selectable time steps. The time step is selected from the 

conditions providing stability and the required accuracy. 
 

Slide 3 (DYNAMICS OF SINGLE DISTURBANCE). The dynamic behavior of a homogeneous 

DNA molecule of N = 128 base A-T pairs under a single perturbation was previously modeled 



numerically. The purpose of the simulation was to test the connection between radial and rotational forms 

of DNA molecule motion. The equilibrium radial state was perturbed, that led to the development of 

torsional vibrations. The upper part of the slide shows distributions of radial and angular generalized 

coordinates of DNA base pairs for t = 8, 40, 72 ps at radial disturbance of five pairs on each side of the 

DNA center n = N/2 by setting initial conditions as: 
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It can be seen that the twist of the molecule develops in different directions from its center. When the 

amplitude of the initial perturbation is doubled (from vmax=1,1 Ǻ/ps to vmax=2,2 Ǻ/ps), the characteristic 

amplitude of the swirling of pairs by the time t = 72 ps changes 5 times (from 0.2 radians to 1.0 radians), 

which indicates a fundamentally non-linear non-stationary behavior of the molecule. 

The lower part of the slide shows the results of similar calculations with random uniformly 

distributed radial perturbation of all DNA pairs. Initial conditions were set as (ξn  is random variable, ξn∊ 

(0, 1]) 
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In this case, non-linear behavior of the DNA molecule is also observed, but the twist angles of the base 

pairs turn out to be much large. Despite setting the initial conditions randomly, that makes them 

oscillating (non-smooth), the numerical model retains its stability and accuracy (the total energy in the 

system is preserved with high accuracy). 
 

Slide 4 (RANDOM DISTRIBUTIONS GENERATORS TESTING). For further study of DNA 

denaturation by molecular dynamics method, generators of pseudorandom values distributed evenly over 

a given interval or according to a normal law are required. The accuracy of the simulation depends on the 

quality of these generators. Therefore, such generators need testing. The results of such testing are 

visually presented on this slide. Pseudo-random numbers distributed according to the normal law are 

obtained from uniformly distributed numbers through the Box-Muller transformation. 
 

Slide 5 (MOLECULAR DYNAMICS). To study the statistical properties of DNA and its 

denaturation, the method of direct molecular dynamics modeling (DMDM) was used. The study was 

carried out for a microcanonical ensemble, i.e. a set of microstates of the DNA molecule was statistically 

averaged at constant external thermodynamic parameters (the number of particles, its total energy and 

volume (no external work under the molecule)). The setting of each DMDM microstate was generated by 

setting the initial radial velocities of the pairs randomly according to a normal distribution with a 

mathematical expectation of µ=0 and a standard deviation σ. 
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Performing a statistically representative series of calculations, we obtain the average values of the total 

E and kinetic Ekin energy of the system of interacting base pairs. To establish a microstate (redistribution 

between potential and kinetic energies) according to the equations of motion (6), (7) at a given mean 

square deviation of the σ and averaging over the number of draws in the series, it was necessary to 

perform at least 10
4
 implementations of random DNA states obtained by numerical integration with a 

dimensionless time step 0.02t∆ ≤  up to t=10
5
. 

Temperature is determined by the average kinetic energy of the system. Each base pair has two 

degrees of freedom and, according to the equipartition theorem of kinetic energy over degrees of freedom, 

it corresponds to the energy in dimensionless variables 2×kBT/2/D (kB is the Boltzmann constant), from 



where (division by D is preserved in equations to use dimensionless values obtained in the calculation) 

B k / / /kin N DT D E= . The total dimensionless energy per freedom degree is / (2 ) / .e E N D=  Having 

carried out the above series of calculations of DMDM for various σ, we obtain the dependence of 

temperature on energy T = T (e) in parametric form (value σ plays the role of a parameter): 

( )B k /T D f σ= , ( ) ,e ψ σ=  where f, ψ are functions defined from DMDM. 

DMDM results are presented in this slide. A solid line shows the work data by M. Barbi et al., crosses 

are the values obtained in our work. There is agreement on the results, but in the denaturation zone 

(horizontal line on the graph T = TD = const) the temperature values in the case of our DMDM do not 

remain strictly constant. 

The results show that during denaturation, the temperature is almost constant ( )B k  2/ 0,D num
T D ≈ , and 

like the phase transition of the first order, this TD temperature can be taken as one of the main 

characteristics of the formation of open states in a DNA molecule. Then we have 
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T = … . The value of entropy change in denaturation is also consistent with theoretical data 

by M. Barbi et al. 
 

Slide 6 (CONCLUSIONS). The conclusions of the work are presented on this slide. The main 

conclusion is that the model is workable and its further development is required to more adequately 

describe the real DNA molecule, which is fundamentally heterogeneous and contains a significantly 

larger number of base pairs than was assumed in the calculations of the present work. 
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