Interaction of Iridium with Silicon Carbide in Diffusion Couples in Wide Temperature Range

M. Golosov, A. Utkin, V. Lozanov, N. Baklanova

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Introduction

Experimental

SiC

- wide bandgap
- $(490 \text{ Wm}^{-1}\text{K}^{-1})$
- characteristics
- oxidation

- Noble metal

- 2000°C

lr

permeability

1. Heat treatment in a hot press

2. Sample preparation:

- observed in the C-containing layer at 28, 56 h

Carbon graphitization vs location

Raman spectra

The carbon graphitizes and agglomerates over the exposure time.

- Phase composition: IrSi, Ir₃Si₂, Ir₂Si, C
- The silicides Ir₃Si₄ and Ir₃Si₅ are observed at

The Ir₂Si is stabilized due to high cooling rate

1800°C.

Conclusion

1. During the solid-state reaction of Ir with SiC the following layers of products are formed: Ir/Ir₃Si/Eutectoid (Ir₃Si+Ir₃Si₂)/IrSi/IrSi+C. The Ir-SiC system is pseudo-binary; no Ir-Si-C ternary **compounds** are formed.

2. Solid-state interaction is controlled by the kinetics due to the strong covalent Si-C bond.

3. Periodic morphology occurs at long exposure times and consists of alternating sublayers IrSi and IrSi+C.

4. The silicides Ir_3Si_4 and Ir_3Si_5 are observed at 1800°C. Previously, these silicides have not been observed in Ir-SiC powder mixtures treated under similar conditions.

5. The carbon formed during the reaction agglomerates and graphitizes with exposure time according to SEM and Raman spectroscopy data

Acknowledgements

This work was financially supported by the Russian Science Foundation (grant No. 23-19-00212).

Contact

Mikhail A. Golosov

- Ph.D. Student
- Junior Researcher of Institute of Solid State Chemistry and Mechanochemistry SB RAS E-mail: golosov@solid.nsc.ru

References: Golosov et al, J. Am. Cer. Soc. 10.1111/jace.17978; Golosov et al, Materialia. 10.1016/j.mtla.2022.101647

Approved for public dissemination