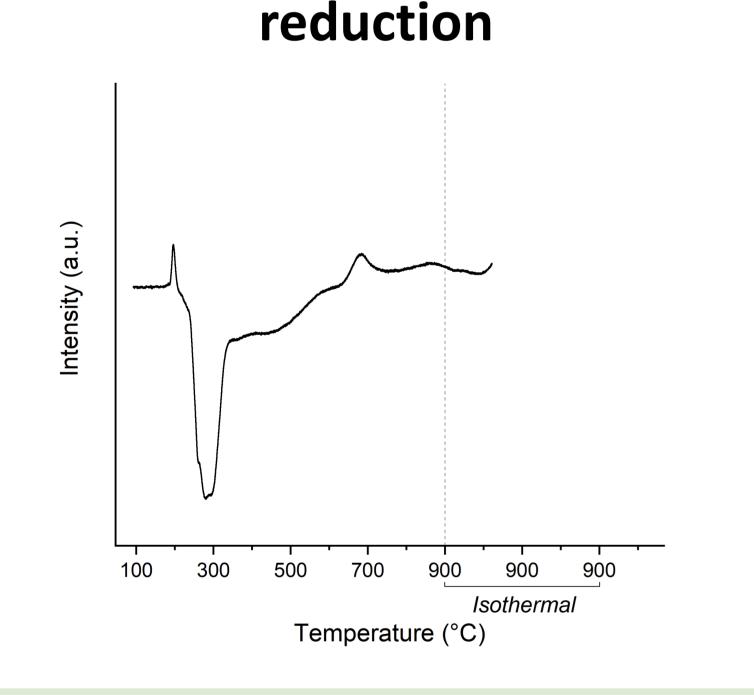
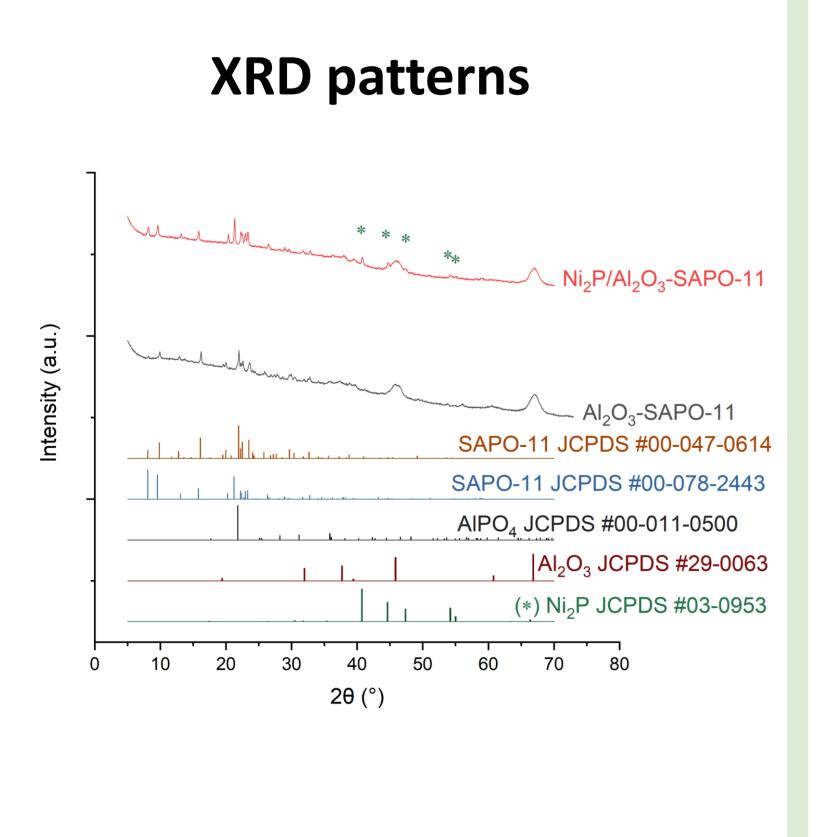
Hydroconversion of Methyl Esters over Ni-phosphide Catalyst on Composite Alumina-SAPO-11 Support

I.V. Shamanaev,* E.N. Vlasova, G.A. Bukhtiyarova

Boreskov Institute of Catalysis, Novosibirsk 630090, Russia

* i.v.shamanaev@catalysis.ru

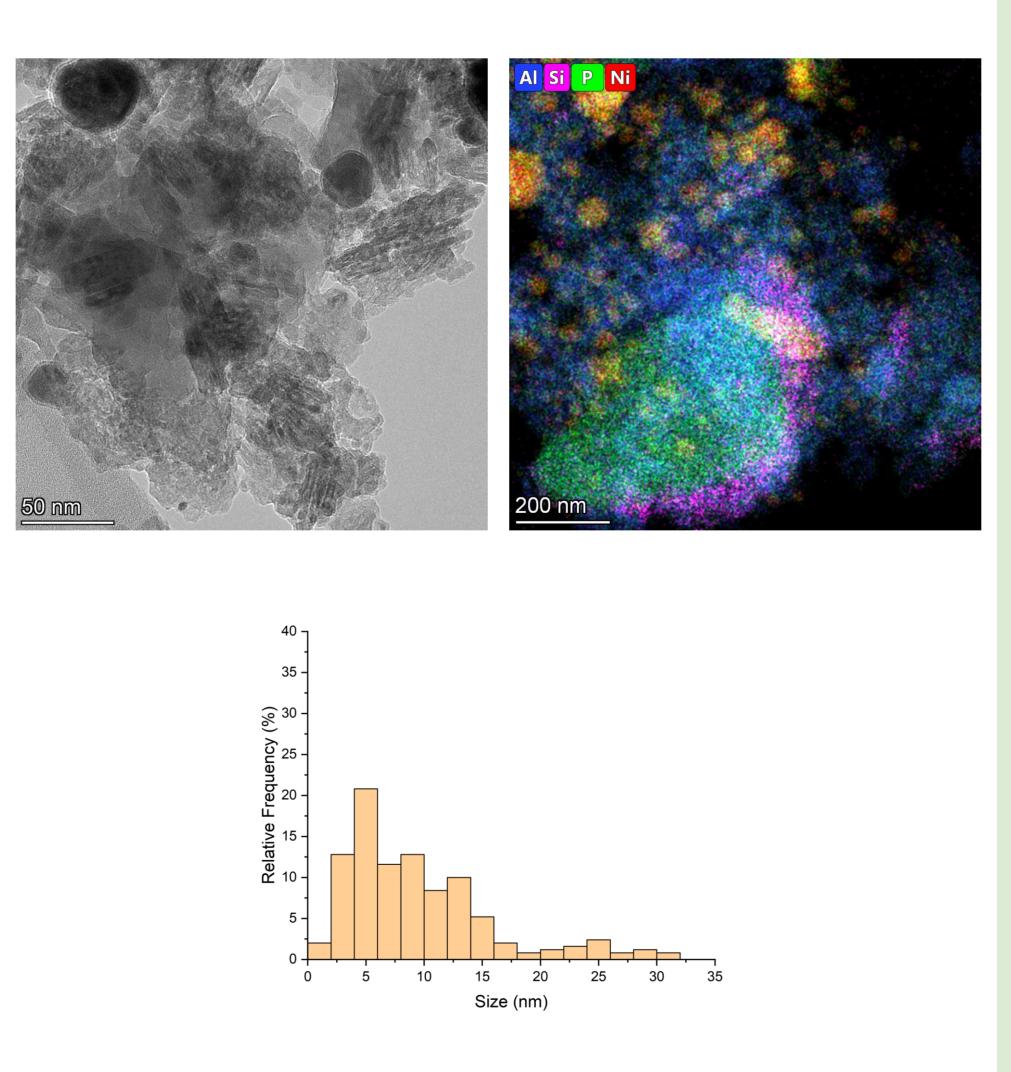

Ni₂P/Al₂O₃-SAPO-11


Introduction Ni-phosphide catalyst on composite Al₂O₃-SAPO-11 support was studied in the hydrodeoxygenation-isomerization (hydroconversion – HC) of methyl esters with different amount of carbon atoms in the chain and different number of double bounds: C16:0 – methyl palmitate, C18:0 – methyl stearate, C18:1 – methyl oleate, C18:2 – methyl linoleate, and C18:3 – methyl linolenate. The catalyst was synthesized by impregnation of the support with aqueous solution of Ni hypophosphite with subsequent

reduction in H_2 flow. The catalyst was characterized by ICP-AES analysis, N_2 physisorption, H_2 -TPR, NH_3 -TPD, XRD, and 27 Al MAS NMR. The hydroconversion experiments were carried out in a flow reactor at 310–340 °C, 2.0 MPa, 5.3 h⁻¹. 100% conversion of all esters was achieved. The number of carbon atoms was shown to influence the selectivity to isoalkanes (at 340 °C for C16 ester it was ~22%, and for C18 esters it was ~30%), but the number of double bonds did not show any impact on the selectivity of iso-alkanes.

drying 110 °C **Support synthesis** peptization calcination 550 °C HNO₃ Al₂O₃-SAPO-11 extrudates 1.1–1.2 mm **SAPO-11 (30%) AlOOH "Disperal 20" (70%)** extrusion Crushing and sieving SAPO-11: $SiO_2/AI_2O_3/P_2O_5 = 1.0/1.0/0.1$ to 0.25-0.5 mm **Impregnation Catalyst synthesis** Reduction in H₂ flow Drying Al₂O₃-SAPO-11 was impregnated by aqueous 450-600 °C 80 °C solutions of phosphorus and nickel precursors Ni precursor Ni:P init. P precursor (Ni - 2.1 mmol/g, ~7 wt.%) followed by drying and reduction in H₂ flow $Ni(OAc)_2$ H_3PO_2 1:2

H₂ temperature-programmed



Physicochemical properties of reduced Ni₂P/Al₂O₃-SAPO-11

Sample	Ni, wt.%	P, wt.%	Ni/P	Al, wt.%	Si, wt.%	S _{BET} , m ² /g	V _p , cm ³ /g	D _p ,	NH ₃ -TPD, μmol-NH ₃ /g	D _{XRD} ,	D _{TEM} ,	Al in AlPO ₄ form, at.%
Al ₂ O ₃ -SAPO-11	_	5.58	_	36.6	0.97	175	0.417	22.8	138	_	_	14
Ni ₂ P/Al ₂ O ₃ -SAPO-11	4.10	10.2	0.47	33.7	0.69	96	0.305	22.6	139	45	11.9	21

 Al_2O_3 -SAPO-11

TEM images

Esters hydroconversion 310-340°C | Ni₂P/Al₂O₃-SAPO-11 2 MPa direct decarbonylation deoxygenation $-H_2O$ $n-C_{n+1}H_{2n+4}$ n- C_nH_{2n+2} -CH₃OH -CH₃OH $iso-C_nH_{2n+2}$ iso-C_nH_{2n+2} iso-C₁₆ m-C₁₆ iso-C₁₅ n-C₁₅ iso-C₁₈ n-C₁₈ Selectivity (%) iso-C₁₇ n-C₁₇ **HC** tests were carried out in a continuous flow fixed-bed reactor at 340 C18:0 C18:1 C18:2 °C, 2.0 MPa, Ester LHSV=5.3 h⁻¹

Summary According to H₂-TPR the reduction and decomposition of precursor starts at ~190 °C. XRD and TEM confirmed formation of Ni₂P phase. ²⁷Al MAS NMR showed formation of small amounts of AlPO₄. Hydroconversion experiments of C16:0, C18:0, C18:1, C18:2, and C18:3 methyl esters were carried out in continuous-flow reactor at 310–340 °C. The esters and oxygen conversion were complete.

The selectivity to iso-alkanes was shown to depend on the carbon chain length. At 340 °C C18 esters gave ~30% iso-alkanes, and C16 ester gave 22% iso-alkanes, which can be related to different stabilities of the carbocations. The number of double bonds in C18 esters did not influence the selectivity to iso-alkanes, probably, due to high rate of esters hydrogenation.

