

PECULIARITIES OF PHASE EQUILIBRIA IN THE Li-Mn-Eu-O SYSTEM INVOLVING MELT Grigorii BUZANOV, George NIPAN, Konstantin ZHIZHIN

Kurnakov Institute of General and Inorganic Chemistry of the RAS 31 Leninskiy prospect, Moscow 119991, Russia, e-mail: gbuzanov@yandex.ru

Solution of a multifaceted problem of effective materials production, along with the development of methods for the synthesis of required chemical and phase composition substances, must ensure the reproducibility of specified functional properties (electrochemical, magnetic etc.) of the materials. In the case of a real multicomponent material with different volatility of the components it consists of, slight temperature or pressure fluctuations of the volatile component during synthesis procedure can cause a considerable effect on the elemental and phase composition of the matter, and hence affect its physicochemical (and functional) properties Deviations from the initial composition can also occur under the operating conditions of this material, which is especially important for systems where one of the components is a transition (TM) or rare earth metal (REM)

with several stable oxidation states. Thus, the solution of this complex problem should include the study of phase equilibria (both stable and metastable) in a given multicomponent system in a wide range of temperature. concentrations of components, and partial pressure of the volatile component(s). A good example of such a system is the Li-Mn-Eu-O system, crystalline materials of which are of significant technological interest (cathodes for Li-ion batteries, magnetic, including spintronic materials etc). Currently, no systematic study of Li-TM-REM-O systems has been carried out. The ternary system Li-Mn-O was the object of study in a number of research [1]. Of the Li-REE-O systems, the only example for which a detailed plot of

phase equilibria exists today is Li-Eu-O [2]. EXPERIMENTAL SECTION

Controlled gas media for syntheses

Gas media	Patrial pressure P(X), atm
Air	$P(0_2) \approx 0.21$
Oxygen "4.0"	$P(0_2) \approx 1$
Argon "5.5", 99.9995% Ar	P(0 ₂) ≈ 0,0001
Hydrogen "6.0", 99.9999% H ₂	P(H ₂) ≈ 1
Argon+5% (vol.) H ₂	P(H ₂) ≈ 0.05

Precursors & Mechanochemical treatment

Li₂CO₃, β-MnO₂, β-Mn₂O₃, Eu₂O₃ (99,98%), LiOH·H₂O (99%), LiNO₃·3H₂O (99,9%), LiH (98%, H₂ gas volumetric), Eu (99%), Mn (99,5%), Li (99,6%)

Rersch MM400 vibromill, grinding jars & balls (steel, ZrO₂) Typical conditions of ball milling (BM): 30 min, 30 Hz, ball to specimen mass ratio ≈ 20 : 1

Solid-state synthesis scheme

Starting reagents: mixtures of binary/ternary compds with preset Li : Mn : Eu ratio

Russian Science

Foundation

RESULTS: TERNARY SYSTEMS Mn-Eu-O SYSTEM

We used experimental and literature data to plot x-y and P_{02} -T projections of the P-T-x-y diagram of the Eu-Mn-O system (Figs. 1 and 2), where there are imaged subsolidus phase equilibria involving three entertailing before and everyon. The solid lines on the crystalline phases and oxygen. The solid lines on the projections are experimental, and dashed lines are hypothetical. $EuMn_2O_5\text{-}MnO_2\text{-}Mn_2O_7\text{-}O_2$ monovariant equilibrium (Fig. 1) is not considered on the P_{02} -T projection because of the low melting temperature of Mn₂O₇ (~280 K). The dashed tie-lines EuMnO₃-O and EuMn₂O₅-O on Fig. 5 are drawn formally to demarcate Eulmi205-0 of high start drawn formarily to demarcate the triangles corresponding to divariant equilibria EuMn205-Mn207-02, EuMn03-EuMn205-02, and Eu203-EuMn03-02, The suggestion about the existence of monovariant equilibrium Eu203-EuMn03-EuMn205-02 is not verified

experimentally [9]; however, this is at variance with the results of our work (Fig. 2, curve c) and can arise from the differing total compositions of the samples; tie-line Eu_2O_3 - $EuMn_2O_5$ is absent on the x-y projection. [3]

Li-Eu-O SYSTEM

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 $10^3 T^{-1}$. K⁻ P02-T projection of the P-T-x-y phase diagram of the Eu-Mn-O system

logPo. [Pa]

-20 ∟ 0.5

Fig.4: Fragment of the x-y-projection, demonstrating phase equilibria involving solid solutions based on EuO. Eu₂O₂ and LiEu₂O₄

The solubility of lithium in EuO, one of the most promising spintronics materials, has been estimated for the first time (as well as it's cubic lattice contraction), which is at least 50–60%, and that for Eu₂O₃ and LiEu₃O₄ is 30% of the total amount of cations. Along with LiEuO₂, the formation of crystalline mixed-valent (simultaneously Eu^{il}+Eu^{il}) phases LiEu₃O₄ and Li₂Eu₅O₈ was confirmed. Using own experimental data, the x-y-projection of Li=EuO system were plotted (Fig. 3). Phase equilibria involving solid solutions is shown on Fig. 4. Two-phase equilibria regions: 1– Li₂O₂-Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-J₂Eu₂O₃-Li₂EuO₂-J₂O₂-Li₂O₂-SeLieu₃O₄. 8 – sEuO-ssLiEu₃O₄, 10– LiEuO₂-Li₂O₂-Eu₂O₃-Li₂D₃-Li₂D₃-Seu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₂O₃-Li₂Eu₃O₃-Li²Eu₂O₃-Li₂Eu₃O₃-Li²Eu₂O₃-Li²Eu₂O₃-Li₂Eu₃O₃-Li²Eu₃O₃-Li²Eu₃O₃-Li²Eu₃O₃-Li²Eu 15 (Eu₂O₃-Eu₃O₄-LiEu₃O₄) and 16 (Eu₃O₄-EuO-LiEu₃O₄) are hypothetical, because applying the LiH as reducing agent the presence of Eu₃O₄ in equilibria were not observed, that can be explained with the formation of ternary Li₂Eu₅O₈ and LiEu₃O₄ compounds.

QUATERNARY SYSTEM Li-Mn-Eu-O

For experimental study the quaternary system Li–Mn–Eu–O have been sectionized into three quasibinary sections: LiEuO₂-Li₂MnO₃ section (Li_{1+x}Eu_x,Mn_xO_{2,5} series), LiEuO₂-Li_MNO₂ sections) and LiEuO₂-Li_MNn₂O₄ (LiEu_{1+x}Mn_xO₂ series), 0 ≤ x < 1, $\Delta x = 0.1$. Based on the pXRD and TG-DSC (in air) data for the temperature range of RT-1100 °C, the subsolidus equilibria (p-T-x-y-projection, **Fig 5a**), bala for the liquidus surface (Fig. 5b), as well as polythermal diagrams of the Li₂O-Eu₂O₃-Mn₂O₃(Mn₃O₄) (Fig. 6 a,b). Areas 1-6 (Fig. 5a) correspond to ternary equilibria 1- L₂O-Li₂MnO₃-LiEuO₂, 2-Li₂MnO₃-LiEuO₂-ssEu₂O₃, 3- Li₂MnO₃-sEu₂O₃-EuMnO₃, 4- Li₂MnO₃-EuMn₂O₄=Mn₂O₃, 5- Li₂MnO₃-EuMn₂O₅-LiMn₂O₄ w 6- EuMn₂O₅-LiMn₂O₄-Mn₂O₃ (Mn₃O₄). No formation of novel quaternary phases, except solid solutions based on spinel phase LiMn₂O₄ (2% Eu solubility, LiMn_{0,seE}U_{0,s2}O_{4,s}) have been detected. LiMnO₂, LiEu₂O₄ and Li₂Eu₂O₃ are not being formed in air (*P*(O₂) = 0.21 atm), not found in equilibria and hence placed in brackets at the corresponding plots (Fig. 5 a,b).

Fig.6: polythermal diagrams of the Li₂O-Eu₂O₃-Mn₂O₃(Mn₃O₄) system: (a) LiEuO₂-LiMn0₂ cross section, (b) LiEuO₂-LiMn₂O₄ section Eu₂O₃, LiEuO₂, Li₂MnO₃, LiMn₂O₄, EuMnO₃, EuMn₂O₅ and melt are marked as Eu, S1, S2, S3, S4, S5 and L. Eutectic (e) and peritectic (p) equilibria of binary systems are marked on the sides of the triangle (Fig. 5b): $e_{1}(S_{Li20}+L+S_{1}), e_{2}(S_{Eu203}+L+S_{1}), e_{3}(S_{Li20}+L+S_{2}), p_{4}(S_{2}+S_{3}+L), e_{5}(S_{3}+L+S_{Mn203}), e_{6}(S_{Eu203}+L+S_{4}), p_{7}(S_{4}+S_{5}+L), e_{1}(S_{120}+L+S_{1}), e_{2}(S_{120}+L+S_{1}), e_{3}(S_{120}+L+S_{2}), p_{4}(S_{2}+S_{3}+L), e_{5}(S_{3}+L+S_{Mn203}), e_{6}(S_{Eu203}+L+S_{4}), p_{7}(S_{4}+S_{5}+L), e_{1}(S_{12}+S_{1$ and e₈(S₅+L+S_{Mp2O3})

[1] Buzanov G.A., Nipan G.D. et al. doi:10.1134/s0036023617050059 [2] Buzanov G.A., Nipan G.D., RJIC, 2023, accepted manuscript

[3] Buzanov G.A., Nipan G.D. doi: 10.1134/S0036023622070051

This work was financially supported by Russian Science Foundation (project 23-23-00576) XVI Chinese-Russian Symposium "Novel Materials and Technologies" 05-14.10.2023, Haikou, PRC

TAT ETT OPAH

Fig. 1: Subsolidus equilibria in the Eu-Mn-O system (x-y-projection of the P-T-x-y-phase diagram)

Li₂Eu₅O₈ LiEuO2 (E i202 EuC

Fig.3: x-y-projection of Li-Eu-O system

Li,MnO

(LiMnO.)

(LiMnO₂)

- Eu

Fig.5: a - subsolidus equilibria (p-T-x-y-projection), o-

experimental compounds, b - projection of the liquidus surface

FuMn_O

a)

(Li₂Eu₅O

b)

LiEuO

Eu